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Inspired by recent experiments on cuprate superconductors investigating the enhanced pinning
of vortex lines, we have performed transfer matrix studies of directed polymers in random media
subject to both point and columnar defects, focusing our attention on the competition between these
two different types of disorder. We find that the positional fluctuations in a mixed random medium
are larger than in the case of purely columnar or point defects, and show via Flory arguments that
the asymptotic behavior is sub-ballistic, * ~ t/(Int)¥, with ¥ = 2 in 141 dimensions—a value
confirmed by our numerics and indicative of a new universality class.

PACS number(s): 02.50.—r, 05.40.+j, 74.60.Ge

With the discovery of superconducting ceramic ma-
terials, there has been a renaissance of interest in the
phenomenology of Abrikosov flux-line lattices, as well as
the statistical mechanics of isolated, roughened vortices.
Initially, particular attention was paid to the importance
of thermal fluctuations—Nelson [1] pointed out that en-
hanced flux-line wandering would lead to an entangled
vortex liquid at magnetic fields slightly above H.;. Nat-
termann and Lipowsky [2], commenting upon this work,
noted that the presence of quenched point defects in these
ceramic superconductors would further enhance the wan-
dering, but not fundamentally alter Nelson’s conclusions.
In addition, these authors were responsible for furnishing
some timely publicity to the apparently distant problem
of directed polymers in random media (DPRM), just in-
troduced by Kardar and Zhang [3]. Indeed, implicit in
their discussion was the assumption that an isolated vor-
tex line in a dirty sample of YBa;Cu3O7; was a physi-
cal realization of the (2+41)-dimensional DPRM, with its
telltale superdiffusive wandering exponent. Subsequent
work by Fisher [4] and collaborators [5], drawing upon
a reformulation of collective pinning theory in the lan-
guage of disorder-induced roughening [6], addressed the
difficult issue of vortex line assemblies in the presence of
point disorder and predicted a novel vorter glass phase
characterized by a nonlinear resistivity. A separate the-
oretical analysis, appropriate to situations of strongly
correlated disorder (i.e., where columnar defects result-
ing from grain boundaries or, perhaps, forests of screw
dislocations provide the dominant pinning mechanism),
was proposed by Nelson and Vinokur (7] and has since
been labeled the Bose glass model by virtue of its ori-
gins in Anderson localization effects of bosons in two
dimensions [8]. The Bose glass model is closely linked
to an experiment by Civale et al. [9], who investigated
vortex confinement effects due to an artificially created
columnar microstructure resulting from high energy ion
bombardment of their superconducting sample. As vig-
orous debate commenced regarding the relevance of these
two models, proponents were quick to stress the essential
differences between them. In short, while point disor-
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der promotes flux-line wandering and entanglement, cor-
related disorder inhibits wandering and promotes local-
ization. Since the two theories, as first proposed, en-
tertained rather different limiting cases, it is natural to
consider the competing effects of point and columnar de-
fects. In particular, we would like to determine the con-
sequences of this competition, both on the phase dia-
gram of the Abrikosov flux-line lattice, as well as on the
disorder-induced roughening of individual vortex lines.
Hwa, Nelson, and Vinokur [10] have recently tended to
the former, extending the nominal Bose glass theory to
include point disorder. The purpose of the present work
is to address the latter. We shall do so within the con-
text of the DPRM, where columnar defects are the result
of time-independent noise, a matter which was examined
as such by Zhang [11] a few years ago using techniques
of Mott variable-range hopping. Building on Zhang’s ef-
forts and related work [12], Krug and Halpin-Healy [13]
have just performed an exhaustive study of the purely
columnar DPRM, examining issues of universality at zero
and finite temperature. Here, by contrast, we propose a
model that interpolates between point and columnar de-
fect limits and discuss the results of a zero-temperature
transfer matrix study investigating the competition be-
tween these defects on the DPRM. Since we consider iso-
lated vortices, our results are relevant to the limit of low
flux-line density, high defect density. Even so, our simu-
lations indicate some surprising, perhaps counterintuitive
findings—chief among them that the purely columnar de-
fect fixed point is unstable to the presence of point dis-
order, being controlled by a new fixed point where the
wandering is sub-ballistic and governed by strong loga-
rithmic corrections. After examining the geometric and
free energy fluctuations of the DPRM, as well as typical
trajectories of the directed polymer, we close with a brief
discussion of possible experimental ramifications.

In the continuum formulation of our DPRM problem,
we consider the configuration of a single directed polymer
(i.e., vortex line) in a random medium populated by both
point and columnar pins to be specified by its transverse
position x(t) as a function of the longitudinal coordinate
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t, which indicates the propagation direction of this elas-
tic line. The partition function governing the statistical
mechanics of the p/c DPRM in d transverse dimensions

is given by
1 dx\’
ofdx
_f‘/dt{§<}%> +Vp(x,t)

+VC(X)}], (1)

where T is the temperature and o the line tension which
discourages transverse wandering of the directed poly-
mer, while V,(x,t) and V,(x) are responsible for the
disorder-induced roughening associated with point and
columnar defects, respectively. In the simplest scenario
these two forms of quenched disorder are assumed to be
spatially uncorrelated from defect to defect. The under-
lying physical picture is manifest—we consider a directed
polymer starting at the origin, propagating into the up-
per half-space t > 0, whose transverse positional fluctu-
ations result from a competition between point defects,
which continually promote short length scale, but cumu-
lative wandering, and columnar defects, which induce lo-
calization effects punctuated by intermittent large-scale
migratory jumps to the pins of lower energy, the whole
process overseen by the modest effects of an elasticity
that discourages any severe deviations from linearity.
At finite temperature, the p/c DPRM involves summing
over all possible paths weighting each with the appro-
priate Boltzmann factor, whereas at T = 0, the mat-
ter becomes one of global optimization in which the di-
rected polymer configuration dominating the partition
function is the path of overall least energy. In the case
V. =0 (i.e., point defects only), much is known concern-
ing the statistical mechanics of the DPRM; for example,
a fluctuation-dissipation theorem [14] reveals that the su-
perdiffusive transverse wandering of the polymer scales as
|| ~ t¢=2/3, while the energy fluctuations from sample to
sample grow as e;ms ~ t9=1/3, In higher dimensions, the
DPRM critical indices are not known exactly, but only
via numerical work [15], which indicates that (41 ~ 3,
though it is believed that the exponent relation § = 2¢ —1
holds true generally [16].

The zero-temperature p/c DPRM on the square lattice
is defined by the recursion relation,

Z(x,t) = /Dx exp

E(z,t+ 1) = min{E(z + 1,t), E(z,t)}
+n(z,t +1) +e(z), (2)

for the ground-state energy E(z,t) of all directed paths
of length t that end at the transverse position x, where
1 <z < L. The point defect energies n(z,t) are ran-
dom numbers drawn uniformly from the interval [0,p],
while the columnar defects, properly thought of as run-
ning through the vertical bonds of the lattice, have ran-
dom energies () € [0, c| that are fixed at the start of the
calculation. Note that we permit only single transverse
steps. This numerically expedient restriction is expected
to give rise to an effective line tension o on large scales.
Permitting multistep transverse jumps, while more ap-
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propriate to actual vortex line wandering, would not in-
cur any changes in the universal quantities of interest.
We employ periodic boundary conditions in the trans-
verse directions [15]. This permits us to simultaneously
propagate an ensemble of L locally optimal paths; that
is, paths constrained to end at a specified transverse po-
sition. In the flux-line problem such a constraint could
arise from strong pinning centers at the surface of the
sample.

In Fig. 1, we summarize our findings concerning the
statistical properties exhibited by the 1+1 p/c DPRM.
The data follow from our T' = 0 numerical transfer matrix
calculations done with transverse system size L = 6000,
and 400 realizations of the mixed random media popu-
lated by point and columnar defects. The transverse po-
sitional fluctuations are recorded in Fig. 1(a) for different
values of p/c, which gauges the relative strengths of the
two types of disorder. Similarly, the energy fluctuations
of the globally optimal path are recorded in Fig. 1(b). As
expected, in the limit of purely point disorder, with p/c
large, a least squares fit to the data associated with the
final thousand steps yields the slopes { = 0.67 +0.01 and
6 = 0.32 £ 0.01 for p/c = 100. By contrast, at the oppo-
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FIG. 1. (a) Positional and (b) energy fluctuations of the
directed polymer in random medjia, subject to the competing
effects of point versus columnar defects. The relative strength
of the two types of disorder is gauged by the parameter p/c.
The slopes of the straight lines are indicated.
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site extreme, characteristic of the columnar defect fixed
point, p/c = 0, we find { = § = 0.51 £ 0.01. That the
wandering and energy fluctuation exponents are identi-
cal for the purely columnar DPRM, and that { =6 = %
for uniform disorder distributions, has been explained by
Krug and Halpin-Healy [13]. Finally, we present illustra-
tive data for the case of a nonzero, but modest value of
p/c. The interesting feature immediately apparent from
the positional fluctuation plot is that the wandering ex-
ponent due to the combined effect of columnar and point
defects is clearly greater than it is in the isolated presence
of either type of disorder. Indeed, a fit as above produces
an effective exponent (g =~ 0.74, though a careful exami-
nation of the data reveals that, unlike the purely point or
columnar cases, the DPRM wandering exponent in the
mixed random medium is truly effective, never asymp-
totic and, in fact, ever-increasing. This behavior is even
stronger for the energy fluctuations, see Fig. 1(b), where
0.5 ~ 0.80, suggesting that the assumed power-law be-
havior is inappropriate in this matter and that a new
fixed point governs the disorder-induced roughening of
directed polymers at finite p/c.

Further insight can be gained from a variable-range
hopping picture developed in close analogy with the
finite-temperature, purely columnar DPRM [13]. We
noted above that the point defects encourage local wan-
dering of the polymer, while columnar disorder tends to
localize it at some particularly favorable defect. More
precisely, the point disorder induces an energy cost ™7
per unit length, if the positional fluctuations are confined
to a transverse scale [, where 7 = —2+2/( [17]. In order
to localize the polymer in a region of size [, the columnar
defect energies in the region therefore have to be of the
order € ~ [~7. The probability to find such a region is,
in d transverse dimensions,

Pe) ~ e ~ exp [— I::l/il] . (3)

These rare, low energy regions act as localization centers
for the polymer, in complete correspondence to the An-
derson localized states in the finite-temperature, purely
columnar DPRM [13]. The resulting conformation of the
optimal path can be pictured as follows: from the an-
chored end point, placed arbitrarily at £ = 0, the poly-
mer makes a rapid transverse excursion to the most fa-
vorable localization center that it can reach, and remains
there for most of its extension. From (3), we estimate
the columnar energy of the most favorable region within
a distance z of the origin to be emin(z) ~ (d Inz)~7/4,
ignoring higher order logarithmic dependences. The to-
tal columnar contribution to the energy of the optimal
paths is, therefore, given by the Flory expression:

Q((E,t) =&z + (t - m)smin(a:)v (4)

where the first term arises from the initial transverse
displacement. Minimizing with respect to x, we obtain
z ~ t/(Int)¥, with ¢ = 14 7/d. Using the known value,
%, for the purely point DPRM roughening exponent, we
obtain 7 =1 and ¢ = 2 for the 1+1 p/c DPRM, a value
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FIG. 2. Scaling plot motivated by the assumption that
the disorder-induced wandering of the DPRM at finite, but
nonzero p/c is sub-ballistic and controlled by a new fixed
point. A least squares fit to the data yields ¥ = 2.02, in
agreement with the Flory argument discussed in the text.
This result is similar to but nevertheless distinct from that
found for the purely columnar problem at finite temperature,
where ¢ = 3 [13].

which is nicely confirmed by the data in Fig. 2, estab-
lishing our belief that wandering of the p/c DPRM is
truly sub-ballistic in nature and of a different universal-
ity class than purely point or columnar problems. For
the 2+1 p/c DPRM, we have 7 = 1.20, so that ¥ = 1.60.
Note the result ¥ = 1 + 2/d for the finite-temperature,
purely columnar DPRM [13] is recovered by setting T to
its thermal value 7 = 2 [17].

Lastly, in Fig. 3, we show globally optimal paths
through the random energy landscape for various values
of p/c, which are indicative of the configurations of the
directed polymer that result from the competing effects
of point and columnar pins. For p/c = 0 the trajectory is
absolutely straight as the polymer becomes strictly local-
ized on the nearest favorable columnar defect, while for
small, though nonzero p/c = 0.1, 0.2, 0.5, the directed
polymer exhibits small amplitude “zero-point motion”
about the minimal energy pin. This effect is exacerbated
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FIG. 3. Globally optimal trajectories of directed polymers
in random media subject to point versus columnar defects for
various values of p/c.
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as the relative strength of point versus columnar defects
is augmented to small integer values (note particularly,
p/c =1 and 2), the localizing effect of the columnar pin
becoming essentially absent when p/c > 5. Indeed, there
is little qualitative difference between the trajectories for
p/c = 10 and 100, both being highly reminiscent of glob-
ally optimal paths in the standard, purely point disorder
DPRM, though we expect, of course, crossover to sub-
ballistic wandering at sufficiently large scales.

In conclusion, we have introduced the p/c DPRM, rele-
vant to the disorder-induced roughening of isolated vortex
lines in ceramic superconducting materials populated by
a high density of point and columnar pins. The essential
features of our transfer matrix analysis in 1+1 dimen-
sions indicate that DPRM wandering in a mixed random
medium, consisting of both point and columnar defects,
is truly sub-ballistic in nature, sharing many features with
the purely columnar DPRM at finite temperature. Nev-
ertheless, forcing the data at finite p/c into a power-law
fit leads to an effective wandering exponent, = 0.74, sim-
ilar to, but exceeding that at the purely point DPRM,
where it is %, and considerably larger than that of the
strictly columnar fixed point, characterized by ( = %
Despite the instability of the latter fixed point to the
presence of even a small amount of point disorder, a ves-
tigial link to the purely columnar problem is apparent
in the near equality of the effective positional and en-
ergy fluctuation exponents that we observe for the 141
p/c DPRM. Finally, we mention our preliminary findings
for the 2+1 p/c DPRM, which suggest the persistence of
all these effects in higher dimensions. Using somewhat
smaller system sizes and shorter polymers (500 steps),
we find 824 ~ 0.33,0.68,0.23 and (4, ~ 0.33,0.61,0.62
for p/c = 0,1,100, respectively. Again, as advertised,
the purely columnar problem has 8 = (; in fact, in d di-
mensions, extremal statistics dictates that the common
value is 1/d. Nevertheless, it must be stressed that the
estimates in the mixed case, p/c = 1, are truly effective
exponents. Going to longer polymers will lead to larger
values. Indeed, for polymers of length ~ 2000 steps, we
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anticipate an increase of roughly 10% in the scaling in-
dices. (A detailed reading of the Civale et al. paper [9]
reveals an aspect ratio of 2000:1, the mean separation
between columnar defects being about 100 A in their 20-
pm-thick sample.) Thicker samples would engender even
greater values of (., pushing the exponent upward to-
ward unity. We note that a large effective wandering
exponent in the presence of both point and columnar de-
fects may incur an anomalous signature in the vortex line
density as the Meissner phase is approached, by virtue of
a simple Flory argument [2] which predicts this quantity
to vanish as (H — H,)¢/(1=¢) in this dimensionality. In-
deed, extending the argument to sub-ballistic wandering
yields an essential singularity in the vortex line density
n ~ exp[—(H — H.1)~Y/(¥)]. Surprisingly, work by Nat-
termann, Feigelman, and Lyuksyutov [18] has recently
called this naive Flory argument into question for point
defects, suggesting that the vortex line density vanish
linearly for such disorder-induced fluctuations, the same
as for thermal roughening, where { = % In any case,
it is clear that high-T, experimentalists would do well
to determine the vortex number density as a function
of field near H.;, using Bitter-pattern techniques atop
pure, point and columnar disordered samples. This sim-
ple measurement might go far to resolve a number of
thorny theoretical issues.

Note added in proof. Readers should be aware of com-
plementary work [19] regarding DPRM delocalization
transitions exhibited in the presence of point disorder
and a single columnar defect.
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